News

图片

News

当前位置: Home >> News >> 正文

【讲座预告】机械工程系列第一期讲座

日期: 2022-05-07 点击:

本期两场讲座报告,具体信息如下:

时间:202259 10:00——12:30


Lecture 1    Making the Invisible Visible with Terahertz: The Last Frontier of the Electromagnetic Wave

太赫兹使不可见的东西变为可见:电磁波的最后前沿

Professor Yukio Kawano

Speaker Bio


Yukio Kawano received the M.S. and Ph.D. degrees in basic science from the University of Tokyo in 1998 and 2001, respectively. From 2001 to 2006, he was an Assistant Professor with Department of Physics, the University of Tokyo, from 2006 to 2011, a Research Scientist with RIKEN, and from 2011 to 2021, an Associate Professor with Tokyo Institute of Technology. He is currently a Professor with Chuo University, a Visiting Professor with Tokyo Institute of Technology, and a Visiting Professor with National Institute of Informatics. His research interests include terahertz science and technology and industrial and medical applications. He received the Young Scientists’ Prize, the Commendation for Science and Technology by the Minister of Education, Culture, Sports, Science and Technology in 2009, the Sir Martin Wood Prize in 2011, the Japan IBM Science Prize in 2011, the JSPS PRIZE in 2014, the Gottfried Wagener Prize, German Innovation Award, in 2014, and the DOCOMO Mobile Science Award in 2015.

Yukio Kawano于1998年和2001年获得东京大学基础科学硕士和博士学位。2001年至2006年,任东京大学物理系的助理教授;2006年至2011年,任日本理化学研究所的研究科学家;2011年至2021年,任东京工业大学的副教授。目前是日本中央大学的教授,东京工业大学的客座教授,国家信息学研究所的客座教授。研究兴趣包括太赫兹科学与技术以及工业和医疗应用。曾获得了青年科学家奖、表彰教育部长的科学技术文化、2009年体育科学和技术奖、2011年马丁爵士木奖、2011年IBM科学奖、2014年JSP奖、戈特弗里德魏格纳奖、德国创新奖项、2014年和2015年获得DOCOMO移动科学奖。

Abstract

With the widespread use of Internet-of-Things devices, such as manufacturing machines in factories and social robots, the development of inspection techniques has been in high demand to ensure the reliability and safety of these devices. Imaging technologies based on terahertz (THz) waves are promising for the use in non-destructive inspections. This talk will present our development of a flexible and wearable THz camera, which has led to multi-view THz visualization and inspection without using bulky systems. Several examples of its industrial and medical applications will be shown.

随着物联网设备的广泛使用,如工厂制造机器、社会机器人等,对检测技术的发展提出了很高的要求,以确保这些设备的可靠性和安全性,因此基于太赫兹(THz)波的成像技术在无损检测中具有广阔的应用前景。本次演讲将介绍新开发的一种灵活的可穿戴太赫兹相机,它可以实现多视点太赫兹可视化和检测,而无需使用笨重的系统,并将展示其工业和医疗应用的几个例子。

Lecture 2     Digital Machining

数字加工

Professor Yusuf Altintas

Speaker Bio


Professor Yusuf Altintas is the fellow of Royal Society of Canada, National Academy of Engineering (USA), CIRP, ASME, SME, ACATECH, CAE, EC, Tokyo University, P&WC, AvH and ISNM. He received Pratt & Whitney Canada’s (P&WC) university partnership (1997), APEG BC’s Meritorious Achievement (2002), APEG BC R.H. McLachlan (2010), UBC Killam Teaching Prize of Engineering (2011), Gold Medal of Engineers Canada (2011), SME Albert M. Sergent Progress Award (2012), NSERC Synergy Award, ASME Blackall Machine Tool and Gage best journal paper award, the special scientific award of Republic of Turkey in Science and Engineering (2013), Georg Schlesinger Production Engineering Award (Berlin, 2016), and ASME William T. Ennor Manufacturing Technology Award (USA, 2016). He holds an Honorary Doctorate Degrees from Stuttgart University (2009) and Budapest University of Technology (2013), and holds Honorary Professor title from BEIHANG University in Beijing. He was the past president of CIRP (International Academy of Production Engineering Researchers) for term 2016 – 2017. He is designated as the Distinguished University Scholar at the University of British Columbia (2017).

He currently directs NSERC CANRIMT Machining Research Network across Canada, and holds the NSERC – P&WC- Sandvik Coromant Industrial Research Chair Professorship to develop next generation Digital Machining Twin Technology. He is also founding president of MAL Manufacturing Automation Lab. Inc. (www.malinc.com) which develops virtual machining technology.

Yusuf Altintas教授是加拿大皇家学会会士、美国国家工程院院士、CIRP、ASME、SME、ACATECH、CAE、EC、东京大学、P&WC、AvH和ISNM的研究员。他获得了普惠加拿大(P&WC)大学合作伙伴(1997),APEG BC 's Meritorious Achievement (2002),APEG BC R.H. McLachlan(2010),UBC Killam工程教学奖(2011),加拿大工程师金奖(2011),中小企业Albert M. Sergent进步奖(2012),NSERC协同奖,ASME Blackall Machine Tool and Gage最佳期刊论文奖,土耳其共和国科学与工程特别奖(2013),Georg Schlesinger生产工程奖(柏林,2016),ASME William T. Ennor制造技术奖(美国,2016)。拥有斯图加特大学(2009年)和布达佩斯工业大学(2013年)的荣誉博士学位,并拥有北京航空航天大学的荣誉教授头衔。曾任2016 - 2017年度国际生产工程研究院院长,被任命为英属哥伦比亚大学杰出学者(2017年)。

目前领导着加拿大国家机械工程研究委员会CANRIMT加工研究网络,并拥有国家机械工程研究委员会P&WC- Sandvik Coromant工业研究主席教授职位,以开发下一代数字加工孪生技术。他也是MAL制造自动化实验室的创始总裁,公司(www.malinc.com)开发虚拟加工技术。

Abstract

The aim of our research is to develop mathematical models of metal cutting operations, machine tool vibrations and control. The science based digital models allow the virtual design of machine tools; simulation, optimization and on-line monitoring of machining operations.

The model predicts the cutting forces, torque and power consumed in machining parts by considering material properties, cutter geometry, structural flexibilities, and cutting conditions along the tool path. The structural dynamics of the machine tool can either be imported from Finite Element analysis if the machine tool is at the design stage, or from the experimental modal measurements if the machine is already built. The simulation system predicts chatter free cutting conditions within the work volume of the machine tool, or detects the presence of chatter vibrations along the tool path. The dynamics of servo drive control systems, and trajectory generation as a function of jerk, acceleration and velocity profiles of machine tools are considered in simulating the machine tool behavior. An in-house developed virtual and real time CNC system allows the design and analysis of any five axis machine tool controller.

The virtual machining system simulates the cutting forces, torque, power, chip load and deflection errors along the tool path, and adjusts the federate along the tool path in CAM environment. The system is also used in on-line monitoring and control of machine tool and machining process by communicating with CNC in real time as a digital twin.

The presentation will cover the overview of basic research we conducted at our laboratory and its application in industry.

该研究的目的是建立金属切削操作、机床振动和控制的数学模型。基于科学的数字模型实现了机床的虚拟设计;加工操作的仿真、优化和在线监测。

该模型通过考虑材料特性、刀具几何形状、结构灵活性和刀具路径上的切削条件来预测切削力、扭矩和切削功耗。机床的结构动力学既可以从有限元分析(如果机床处于设计阶段)导入,也可以从实验模态测量(如果机床已经建成)导入。该仿真系统可以预测机床工作体积内的自由切削颤振情况,或检测沿刀具路径存在的颤振振动。在机床行为模拟中,考虑了伺服驱动控制系统的动力学特性,以及机床的加速度、速度和加速度分布对轨迹生成的影响。一个内部开发的虚拟和实时数控系统允许设计和分析五轴机床控制器。

该虚拟加工系统在CAM环境下模拟切削力、扭矩、功率、切屑负载和偏转误差,并对工件沿刀具路径进行调整。该系统还可以作为数字孪生体与数控机床进行实时通信,用于机床和加工过程的在线监测和控制。

本报告将涵盖我们在实验室进行的基础研究及其在工业上的应用概况。